Studying Small Language Models with Susceptibilities

Authors

Affiliations

Garrett Baker Timaeus logo Timaeus George Wang Timaeus logo Timaeus Jesse Hoogland Timaeus logo Timaeus Daniel Murfet Timaeus logo Timaeus

Published

Apr 25, 2025

Links

Read paper

Abstract

We develop a linear response framework for interpretability that treats a neural network as a Bayesian statistical mechanical system. A small, controlled perturbation of the data distribution, for example shifting the Pile toward GitHub or legal text, induces a first-order change in the posterior expectation of an observable localized on a chosen component of the network. The resulting susceptibility can be estimated efficiently with local SGLD samples and factorizes into signed, per-token contributions that serve as attribution scores. Building a set of perturbations (probes) yields a response matrix whose low-rank structure separates functional modules such as multigram and induction heads in a 3M-parameter transformer. Susceptibilities link local learning coefficients from singular learning theory with linear-response theory, and quantify how local loss landscape geometry deforms under shifts in the data distribution.